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a b s t r a c t

The parabolic beam equations are solved using high-order compact differences for the
Laplacians and Runge–Kutta integration along the beam path. The solution method is ver-
ified by comparison to analytical solutions for apertured beams and both constant and
complex index of refraction. An adaptive 4th-order Runge–Kutta using an embedded
2nd-order method is presented that has demonstrated itself to be very robust. For aper-
tured beams, the results show that the method fails to capture near aperture effects due
to a violation of the paraxial approximation in that region. Initial results indicate that
the problem appears to be correctable by successive approximations. A preliminary assess-
ment of the effect of turbulent scales is undertaken using high-order Lagrangian interpola-
tion. The results show that while high fidelity methods are necessary to accurately capture
the large scale flow structure, the method may not require the same level of fidelity in sam-
pling the density for the index of refraction. The solution is used to calculate a phase dif-
ference that is directly compared with that commonly calculated via the optical path
difference. Propagation through a supersonic boundary layer shows that for longer wave-
lengths, the traditional method to calculate the optical path is less accurate than for shorter
wavelengths. While unlikely to supplant more traditional methods for most aero-optics
applications, the current method can be used to give a quantitative assessment of the other
methods as well as being amenable to the addition of more physics.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Work in the field of laser beam propagation dates back to the 1960s. Traditionally interest was in propagation over large
distances in the atmosphere, where variations in the index of refraction are typically dealt with statistically [1]. Recently
there has been renewed interest in the near field laser propagation, with a special interest in turrets on airborne platforms.
The majority of research in this field has focused on geometrical optical approximations [2,3]. An alternative method is to use
the paraxial beam method (also called the parabolic equation or quasi-optical approximation [1]) to solve for the laser prop-
agation. Early work in solving the parabolic equation utilized second order finite-differences in space and either Leapfrog,
Crank-Nicolson or alternating direction implicit (ADI) along the beam path [1,4]. For improved accuracy, Fast Fourier Trans-
forms (FFTs) are often used in the transverse direction and the split-step method for advancing the solution along the beam
path [5]. Recently, this latter technique combined with a 4th-order Runge–Kutta has been effectively used to study the prop-
agation of short laser pulses [6]. The present work studies the possibility of utilizing high-order compact finite-differences
for the transverse derivatives coupled with a Runge–Kutta time integrator for aero-optics problems. As a simplified test case,
the propagation of the beam through an idealized density field is considered. It will be shown that the density does not have
to have as high a resolution as is needed for beam propagation. This is consistent with other investigations into the subject
[7].
. All rights reserved.
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Nomenclature

A amplitude of beam envelope
G Green’s function
Kgd Gladstone–Dale constant
Ma Mach number
R radius in spherical coordinates
Red0 Reynolds number based on reference boundary layer height
T Runge–Kutta truncation error
U scalar representation of beam
a radius of circular aperture
c0 speed of light in vacuum
f focal length of beam
i

ffiffiffiffiffiffiffi
�1
p

k wavenumber
n index of refraction
p power for adaptive Runge–Kutta coefficient
r, h, z cylindrical coordinates
r0 Gaussian 1/e radius
x, y, z, t Cartesian coordinates and time
d mean boundary layer height
/ combined Green’s function
w, dw phase, phase difference
k wavelength of beam
q density
x time harmonic frequency
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One of the advantages of the current method over the traditional methodologies based on OPD is that it contains more
physics. While it is not considered necessary to replace the traditional methods for routine computations, the current ap-
proach can be used to help give a quantitative assessment of the accuracy of the methods, as well as being amenable to
the addition of more physical modeling, including non-linear effects and beam/flow interaction, should the need arise.

2. Theoretical development

For continuous wave laser propagation with a time harmonic dependence of e�ixt, Maxwell’s Equations can be reduced to
the scalar Helmholtz equation [1,4,8,9]:
r2U þ x2n2

c2
0

� �
U ¼ 0; ð1Þ
where n is the index of refraction, c0 is the speed of light in vacuum and U is either of the electric filed components perpen-
dicular to the direction of propagation. The frequency is related to the laser wavelength by x = 2pc0/k, while the index of
refraction is related to the density empirically using the Gladstone–Dale constant:
n � 1þ Kgdq: ð2Þ
The Gladstone–Dale constant for air is approximately (in m3/kg) [1,10]:
Kgd � 2:24� 10�4 1þ 7:52� 10�3

k2

 !
m3

kg

� �
ð3Þ
with k is measured in microns.
For the parabolic equation, the beam is expanded as:
U ¼ Aðx; y; zÞeikz ð4Þ
which results in the equation for propagation of the beam envelop being:
r2
?Aþ @

2A
@z2 þ 2ik

@A
@z
þ k2 n2

n2
r
� 1

� �
A ¼ 0; ð5Þ
wherer\ is the transverse component of the Laplacian. A Schrödinger like equation for the amplitude is obtained by making
the paraxial approximation j@zzAj � jk@zA j.
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r2
?Aþ 2ik

@A
@z
þ k2 n2

n2
r
� 1

� �
A � 0: ð6Þ
Eq. (6) can be generalized to include extra polarization term on the right hand side which can incorporate non-linear effects
into the formulation [6].
3. Computational methodology

For the current implementation of the parabolic beam equation, the differences in the transverse plane are computed
using high-order compact differencing. Compact finite-differences are derived by using information about the derivatives
of neighboring points to increase the accuracy. For instance, the second derivative in x is given as:
a0
@2A
@x2

�����
jþ1;j

þ @
2A
@x2

�����
j;j

þ a0
@2A
@x2

�����
j�1;j

¼ a1
Ajþ1;j � 2Aj;j þ Aj�1;j

Dx2

� �
þ a2

Ajþ2;j � 2Aj;j þ Aj�2;j

4Dx2

� �

þ a3
Ajþ3;j � 2Aj;j þ Aj�3;j

9Dx2

� �
; ð7Þ
where the coefficients are determined by matching the leading truncation terms of the Taylor series. A similar formulation is
given for the derivatives in the y-direction. Coefficients for a0, a1, a2, a3 are given in Table 1. A nice summary of these methods
is given by Lele [11].

The characteristic eigenvalues for the beam Eq. (6) lie entirely on the imaginary axis. Due to the small wavelength, an
explicit Runge–Kutta (RK) may be used to integrate the envelope along the beam path. The beam Eq. (6) is discretized as
a grid of ordinary differential equations in the ẑ-direction coupled in the transverse direction by the Laplacian solved using
compact differences:
@zA ¼ f ðz;AÞ; ð8Þ
where
f ðz;AÞ ¼ i
2k
r2
?Aþ ik

2
n
nr

� �2

� 1

 !
A: ð9Þ
The details of the adaptive Runge–Kutta may be found in Appendix A.
4. Verification of methodology

For verification purposes, the Method of Manufactured Solutions [12] is utilized. To implement this the varying index of
refraction in (6) is replaced by:
n ¼ nr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g

k2

� �s
; ð10Þ
where g is a complex function as outlined in Appendix B.
Fig. 1 shows the magnitude of the pulse after propagating to z = 100. The error through the center of the beam as it prop-

agates its entire length is shown in Fig. 2. This case was run with the Laplacian being calculated from 2nd to 8th order accu-
racy using the coefficients in Table 1. The L1 error at the ending plane was calculated and shown in Fig. 3. If one ignores the
points corresponding to the coarsest grid, the slopes are all close to the theoretical. It is interesting to note that the 6th and
8th order cases still retain these slopes when the problem is being marched by a method that is only 4th order in z. However,
it should be remembered that the condition to derive the governing equation was that j@zzAj � jk@zAj, and that since the
method is explicit, the stability from the Laplacian term will tend to force Dz / k/(1/Dx2 + 1/Dy2). Further details regarding
the effect of the adaptive Runge–Kutta on the error can be found in Appendix A.
ents for compact-differencing.

r a0 a1 a2 a3
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Fig. 1. Amplitude of Gaussian pulse propagated complex index of refraction at z = 100 [cf. Eq. (53), Appendix B].

Fig. 2. Error from propagation through complex index of refraction.
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5. Computational results and discussion

Fig. 4 shows a Gaussian beam with a target focus at f = 20 propagating to z = 40. The actual minimum beam waist is just
short of f and may be calculated [1]:
zw ¼
k2r4

0f

k2r4
0 þ 4f 2

: ð11Þ
Once passing the actual focal point, the beam diverges. The symmetry of the solution is apparent; and by taking the complex
conjugate of the equations, the beam may be marched in ±z. Only two types of beams are considered in the present work. The
first has a Gaussian profile at z = 0 of:
A ¼ e
� 1þ

ikr2
0

2f

� 	
r

r0

� 	2

; ð12Þ
where the 1/e point of the real part is at r0 = 1.18 and f = 2000. The second type of beam is a ‘‘top-hat” profile modeled by:
A ¼ 1� tanh sðr � p=1:5Þ½ �
2

; ð13Þ



Fig. 3. Grid refinement in transverse direction. [Note: rightmost points not included in slope calculation.]

Fig. 4. Gaussian beam with focal length �20 propagating in constant density.
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where s is the slope of the tangent function. This ‘‘top-hat” profile corresponds to f ?1 and is a purely diverging beam. The
computational domain will typically be either ±p or ±5 in the x–y plane.
5.1. Diffraction effects with constant index of refraction

For constant index of refraction, the Helmholtz equation (1) is typically solved by using Green’s Theorem [8,9,13]. If one
assumes planar apertures, the inconsistencies of the Fresnel–Kirchhoff diffraction formula can be eliminated by using two
Green’s functions, so that the function itself vanishes in the aperture [8,9]. The Green’s function appropriate for this problem
is well known to be [8,13]:
G�ðx;x0Þ ¼ eikR�

4pR�
; ð14Þ
where



Fig. 5.
of each
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R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
ð15Þ
and the wavenumber is defined for a reference index of refraction k = 2pnr/k.
The equation for the field for z > 0 reduces to:
Uðx; y; z > 0Þ ¼ �
Z

V 0
/ r2U þ k2U
� 	

dV 0 �
Z

S0
U
@/
@z

� �
z0¼0

dS0; ð16Þ
where S
0

is at the aperture plane z
0
= 0 and / = G+ � G�. If the index of refraction is changing, then the problem results in:
Uðx; y; z > 0Þ ¼ �
Z

S0
U
@/
@z

� �
z0¼0

dS0 þ
Z

V 0
/k2 n

nr

� �2

� 1

 !
U

 !
dV 0; ð17Þ
where the Green’s functions for constant index of refraction has been retained. As can be seen, if the index of refraction is
constant then (17) takes the more familiar form in cylindrical coordinates:
Uðr; zÞ ¼ �1
2p

@

@z

Z 2p

0

Z a

0
Uðr0; 0Þ eik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þr2þr02�2rr0 cosðh�h0Þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ r2 þ r02 � 2rr0 cosðh� h0Þ
p r0dr0 dh; ð18Þ
where a is the aperture radius.
5.1.1. Aperture effects in the Fresnel region
For apertured beams, it is common to introduce the Fresnel number:
N F /
a2

Lk
; ð19Þ
where here, a is a characteristic length of the aperture and L is the propagation length. For a square aperture, this becomes
[9]:
N F ¼
wxwy

zk
; ð20Þ
where 2wx and 2wy are the aperture widths in the x and y ordinates, respectively.
As will be shown in the next section, except for distances very close to the aperture, the paraxial approximation holds and

the integral (18) can be compared to the results of solving (6). For the current computation, the aperture is not perfect but is
modeled with a hyperbolic tangent with a slope of 200. Fig. 5 shows the agreement for a Fresnel number of 2 between the
two methods. As one gets nearer the aperture, the oscillations in the solution become greater, but the parabolic method still
gives a good agreement. This can be seen in the N F ¼ 10 case in Fig. 6. The higher grid density in integral solution of (18)
seen in Fig. 6 represents the required sampling density in the aperture plane of the solution. The disagreement near the edges
in these figures is due to the oversimplified boundary conditions of A = 0 along the outer boundary of the parabolic method.
Square aperture, N F ¼ 2. (a) Magnitudes through the center of the aperture for the integral (18) and paraxial beam approximation (6) plotted on top
other. (b) Magnitude of beam for both methods plotted side by side. Left: integral method. Right: parabolic beam solution.



Fig. 6. Square aperture, N F ¼ 10. (a) Magnitudes through the center of the aperture. [Solid line: integral Eq. (18). Symbols: paraxial beam approximation,
Eq. (6).] (b) Magnitude of beam for both methods plotted side by side (every other gridline plotted). Left: integral method. Right: parabolic beam solution.

M.D. White / Journal of Computational Physics 229 (2010) 5465–5485 5471
5.1.2. Near aperture, near-axis solution
Solving the Green’s functions near the aperture can be numerically challenging for large wavenumbers due to the Green’s

function singularity. One method of solving the Rayleigh–Sommerfeld integrals was developed by Dubra and Ferrari [14]
which gives the exact solution to the problem along the entire axis for circular apertures. In this method, the observation
point is shifted to the (x

0
, y

0
) ordinates of the observation point as shown in Fig. 7. The key to their method is a translation

of coordinates such that the reference point is located at (0, 0, z). In this circumstance, Eq. (18) reduces to:
Uðx; y; zÞ ¼ eUð0;0; zÞ ¼ z
2p

Z
R

Z
Uðr0; h;0Þ e

ik
ffiffiffiffiffiffiffiffiffiffi
z2þr02
p

z2 þ r02
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ r02
p � ik
� �

r0dr0 dh; ð21Þ
where eU is simply U after having undergone a simple coordinate translation. Setting U(r
0
, h, 0) = U0 constant inside the aper-

ture and making a change in variable
R2 ¼ r02 þ z2 ð22Þ
gives:
eUð0;0; zÞ ¼ � zU0

2p

Z h2

h1

eikR

R

����RmaxðhÞ

RminðhÞ
dh: ð23Þ
If the observation point projects outside the aperture, then the integration needs to take place from the angles of the tangent
lines from the origin to the aperture. If the observation point projects inside the aperture at z = 0 in the x–y plane, then the
lower limit is just Rmin(h) = z and the equation reduces to:
eUð0;0; zÞ ¼ U0eikz � zU0

2p

Z 2p

0

eikRmaxðhÞ

RmaxðhÞ
dh: ð24Þ
Fig. 7. Coordinates for Rayleigh–Sommerfeld integration of Dubra and Ferrari [14].
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For solutions near the center line, the solution may also be approximated. Expanding Rmax in terms of the distance rc to the
center of the aperture in the aperture plane:
Rmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2

p
þ arcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ z2
p cosðh� hcÞ þ

cosð2ðh� hcÞÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2
p � a2 cos2ðh� hcÞ

2ða2 þ z2Þ
3
2

 !
r2

c þOðr3
c Þ: ð25Þ
For kr2
c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2
p

� 1, one may keep only the first two terms of Rmax in the exponent [and just the first term in the denom-
inator] of Eq. (24) to give:
Uðrc; zÞ ffi U0 eikz � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2
p eik

ffiffiffiffiffiffiffiffiffi
a2þz2
p

J0
karcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2
p
� �� �

: ð26Þ
Since rc is the distance near the aperture, this can be written as:
Uðr; zÞ ffi U0eikz � zU0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2
p J0

karffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2
p
� �

eik
ffiffiffiffiffiffiffiffiffi
a2þz2
p

: ð27Þ
For r = 0, this reduces to the exact analytical solution along the aperture axis [14].
As the observation plane approaches the aperture, a comparison of the exponential terms in (27) shows that the paraxial

approximation for beam envelope breaks down. From a physical standpoint, the diffraction of the waves from the edge of the
aperture interfere with the waves passing through the aperture. This might be especially important if one wished to include
non-linear effects, such as thermal blooming into the model. The methodology of Dubra and Ferrari [14] was utilized to
investigate these near aperture effects. The integration was implemented using systematic refinement (also known as com-
posite rules [15]). The advantage to this implementation is that the solution can be systematically refined until the desired
accuracy is achieved.

The numerical validation for the integration can be seen in comparison with the analytical value for the center line on a
‘‘top-hat” profile for a circular aperture as in Fig. 8. In this integration, the aperture is perfect (sharp). For the paraxial approx-
imation, the aperture is again modeled with a hyperbolic tangent with slope of 200. To reduce the computational overhead,
the non-dimensional wavenumber was reduced to 500 for these cases. The solution is computed at 1 radius away from the
aperture. Fig. 9 shows that the agreement is in close agreement out near the edge, but the paraxial approximation misses the
solution near the axis. Fig. 10(a) shows the solution near the axis along with the analytical correction of the last term of (27).
As can also be seen in Fig. 10(b), the difference of the near-axis values has little effect on the far-field solution. This is likely
due to the small amount of energy contained in this term.

One potential way to improve the accuracy of the parabolic equation near the aperture is to do a Born approximation for
the equation where each refinement is another parabolic equation. Define:
A ¼ A0 þ A1 þ A2 þ 
 
 
 ð28Þ
For constant index of refraction this reduces to:
Fig. 8. Comparison of computed center line value with numerical integration with the analytical solution.



Fig. 10. Comparison of numerical integration near axis with the Rayleigh–Sommerfeld, paraxial beam solution and paraxial plus approximate analytical
correction. (a) Comparison near axis. (b) Comparison of paraxial with paraxial plus analytic near-axis approximation.

Fig. 9. Comparison of numerical integration with the paraxial solution.
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2ik
@A0

@z
� �r2

?A0; ð29Þ

2ik
@A1

@z
� �r2

?A1 �
@2A0

@z2 ; ð30Þ


 
 

To test this approach, the problem was further reduced to a two dimensional aperture, using the appropriate 2D Green’s
function:
G ¼ i
4

Hð1Þ0 ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� nÞ2 þ z2

q
Þ: ð31Þ
The Hankel function is computed using the polynomial approximations given by Olver [16]. These approximations have an
accuracy of better than 5 � 10�8. The integrals were computed to at least one order of magnitude less that this. As can be
seen in Fig. 11, this method may be used to improve the solution in this region. However, the combination of terms which

behave like ei k z and eik
ffiffiffiffiffiffiffiffiffi
a2þz2
p

leads to harmonics which require a much smaller spatial step in integration.

5.2. Propagation through turbulence

5.2.1. Interpolation of density and resolution requirements
For a preliminary assessment of the resolution requirements of the flow field, the beams were propagated through com-

pressible isotropic turbulence. This work used the 1283 result from the high-order large-eddy simulation of Visbal and Rizz-
etta [17] using the Air Force Research Laboratory code FLD3DI [18]. The initial condition for this solution had an initial



Fig. 11. Comparison of numerical integration near axis with the paraxial solution and approximate analytical solution.
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turbulent Mach number of 0.4 (defined as the ratio of the RMS velocity to the mean speed of sound) [17]. The normalized
RMS density fluctuation of this case was:
hq02i=hqi2 ¼ 0:008
while the peak density variations were rather large ranging from approximately 0.6–1.6.
Two methods were used to transfer the density from the original grid to the aero-optics grid. The first method utilized a

spectral interpolation procedure, whereby the density was transformed into Fourier space prior to being read into the code.
This allows for great flexibility in gridding, as the spatial distribution can be calculated for any grid size as the solution ad-
vances. The density is first mapped into x and y by a 2D direct Fourier transform (DFT). While relatively computationally
intensive, it is only done once at the beginning of the simulation. This leaves at each x, y ordinate a 1D Fourier series in z
Fig. 12. Isotropic turbulence ‘‘box” 2p � 2p in x and y and from 0 to 10 in z. (Tophat profile shown at z = 0 and z = 12.)

Fig. 13. Propagation of Gaussian beam to z = 10. Left: RefAg. Middle: ImfAg. Right: jAj.
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that can be summed for each location required by the Runge–Kutta integrator. It was for this reason that the standard RK4
was chosen, as aside from an initial calculation at z = 0, the density (and hence index of refraction) is only calculated twice
during the four RK stages in each step.

The second method uses Lagrangian interpolation to map the density discrete onto the optical grid [19]:
qðx; y; zÞ ¼
Xb1

j¼a1

Xb2

k¼a2

Xb3

‘¼a3

qðxj; yk; z‘Þ
Yb1

m¼a1
m – j

x� xm

xj � xm

Yb2

n¼a2
n – k

y� yn

yk � yn

Yb3

p¼a3
p – ‘

z� zp

z‘ � zp

0B@
1CA: ð32Þ
In the above equation, j, k, ‘, m, n and p are all integers representing the index of the spatial variables on a Cartesian grid. As
the grid for the parabolic equation in the transverse direction is kept fixed, the density is first interpolated onto that grid in
the x and y directions. The code then interpolates the function in the z direction as necessary. In the code, the minimum sten-
cil is two points bracketing the desired value. Thus at a minimum linear interpolation is performed. The stencil can be in-
creased by one on both sides to increase the order of accuracy by two. The exception is near the boundaries where the
interpolation becomes one-sided.

Since practical problems typically consist of a shear layer followed by relatively smooth flow, the density is further mod-
ulated by a hyperbolic tangent function: (1 � tanh[25(z � 10)])/2. Some isosurfaces of the turbulence are shown in Fig. 12.
While the real and imaginary parts of the change noticeably just after the turbulence, the magnitude appears unchanged by
the turbulence as seen in Fig. 13. However, these distortions in the real an imaginary parts of the beam continue to affect the
Fig. 14. Gaussian beam propagated to z = 100. Top: constant density. Bottom: isotropic turbulence to z = 10, followed by constant density.
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beam while it propagates through the constant density region, and by z = 100, the bottom half of the Figs. 14 and 15 a notice-
able distortion in both profiles.

To compare the effects of the Lagrangian interpolation, the optical path difference was calculated by integrating through
the density field:
Fig. 15. Top-hat beam propagated to z = 100. Top: constant density. Bottom: isotropic turbulence to z = 10, followed by constant density.

Fig. 16. OPD at z = 10.4. Left: 128 mode solution. Right: difference between 128 mode solution and 2-pt interpolation.



Fig. 17.
case. To
Bottom

Table 2
L2 error

2-pt

Lagra

4.34

Lagra
4.34
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OPD ¼
Z L

0
n� nrð Þdz ¼

Z L

0
Kgd q� qrð Þdz; ð33Þ
where qr is the reference far-field density. The simulation was run to z = 10.4, just past the ramp down of the turbulent zone
with a spatial step of 1/100th that of the spacing of the original turbulence grid. Both the background density grid and the
aero-optics grid ranged from ±p in the x and y directions. The aero-optics grid had 221 � 221 points in the xy plane. The OPD
is advanced with the same weights from the standard RK4 as the beam; which is equivalent to a Simpson’s integration of the
OPD. Lagrangian interpolation of even orders were compared to the reference density which was calculated using the full
128 mode spectral method; this being the highest resolution available based on the original data. The OPD and difference
in the OPD as calculated using linear interpolation are given in Fig. 16. The results of the L2 errors are given in the first
row of Table 2.

The higher-order interpolations stop giving much improvement as the number of points is increased. This is mainly due to
the one-sided interpolations at z = 0 and x, y = ±p. To verify this, the background density was expanded using periodicity by
16 points in �z, ±x and ±y directions, so that no one-sided differences were used. The results as shown in the second row of
Table 2. By reducing the slope of the hyperbolic tangent used to truncate the turbulent region from 25 to 5, the 34-pt inter-
polated solution is improved by a factor of about 2. The effect of the interpolation as the beam propagates in the z-direction is
seen in Figs. 17 and 18.
5.2.2. Comparison of parabolic beam method and OPD
It is interesting to compare the phase difference from the beam equations with that calculated from the geometrical op-

tics OPD. Examination of (4) and (57) [Appendix C] shows that for k
s = k z a phase difference can be calculated from the
solution of the parabolic beam equation via:
Magnitude and error for beam propagated through turbulent region z 2 (0,10) at final location z = 100. Top left: magnitude shown for 128 mode
p right: difference between solutions using 2 interpolation points and the 128 mode case. Bottom left: difference using four interpolation points.
right: difference using 10 interpolation points.

based on reference calculation of 128 modes.

4-pt 6-pt 8-pt 10-pt 18-pt 34-pt

ngian interpolation

� 10�2 7.17 � 10�3 3.00 � 10�3 1.77 � 10�3 1.41 � 10�3 2.37 � 10�3 7.57 � 10�2

ngian interpolation w/ larger density domain
� 10�2 6.98 � 10�3 2.85 � 10�3 1.54 � 10�3 9.54 � 10�4 2.82 � 10�4 1.38 � 10�4



Fig. 19.
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Fig. 18.
interpo
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dwb ¼ �i lnðA=ArÞ; ð34Þ
where Ar is the amplitude of the solution with the reference index of refraction nr. As dwb is in general complex, the optical
path difference from the beam solution may be determined from the real part:
OPDb ¼
kvac

2p
Refdwbg: ð35Þ
While it is tempting to compare the OPD directly with the OPDb, it is often safer to compare phase differences. The reason for
this is thatRefdwbg is constrained computationally by its definition in (34) to give the principle value between (�p, p], while
dwgo in (60) [Appendix C] has no such constraint. Thus for comparison purposes, dwgo should also be mapped to its principle
value. There can still be a problem when Refdwbg and dwgo lie close to but on different sides of the branch cut at ±p. How-
ever, these jumps are easily detected and can be removed by the addition or subtraction of 2p as needed.
Phase of Gaussian beam at z = 10. Left: real phase difference of Gaussian beam,Refdwbg. Middle: difference of the real phase differences of Gaussian
(dw). Right: imaginary part of the Gaussian beam phase difference, Imfdwbg.
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Magnitude and error for beam propagated through turbulent region z 2 (0,10) at final location z = 150. Left: magnitude shown for two Lagrangian
lation points. Right: difference between solutions using 2 and 18 interpolation points.
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To compare the parabolic beam method with OPD, the difference of the phase differences: DðdwÞ ¼ Refdwbg � dwgo is cal-
culated. As seen in Fig. 19, the agreement betweenRefdwbg and dwgo is [10%, especially in the main part of the beam, where
it is under 5%. If a Gaussian beam is propagated through the turbulent zone out to a distance of z = 100 by (6), and compared
with the solution from the Rayleigh–Sommerfeld equation with the analytical OPD, the difference is <2.5% as seen in Fig. 20.

For the apertured beam, there is another consideration as to whether aperturing the beam after the turbulent region is
acceptable. On first look, it seems that the solution is noticeably different as shown in Fig. 21(a). Here the first two cases were
the apertured Gaussian propagated via Eq. (6) to z = 10. In one case, the propagation was through the turbulent region, while
in the other, it was propagated through free-space and OPD applied at z = 10. The agreement at z = 100 is quite good. Com-
pared to this was the Gaussian apertured at z = 10 with the OPD applied. This result is noticeably different. However, if the
last case is actually calculated at z = 110 rather than z = 100, the solution agrees with the previous two as seen in Fig. 21(b).
This can be understood as shifting the aperture back to z = 0.
Fig. 20. Difference between parabolic approximation and OPD based calculation at z = 100. (a) Magnitude. (b) Magnitude difference. (c) Difference in real
part of solution. (d) Difference in imaginary part of solution.
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Fig. 21. Effect of aperture on location. (a) Comparison of aperturing with final distance z = 100. (b) Addition of solution for the Gaussian apertured at z = 10
with OPD applied and propagated to z = 110.
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5.2.3. Propagation through a supersonic boundary layer
As an example of a more realistic flow, a Gaussian beam is propagated through a supersonic boundary layer with an

incoming freestream Mach number of Ma = 3.0. The flow comes from a Large Eddy Simulation upstream of a compression
ramp calculated by Rizzetta and Visbal [20]. The density is non-dimensionalized by the incoming freestream and achieves
a high of 1.2 and low of 0.3 in the region where the beam is propagated. The Reynolds number based on the mean incoming
boundary layer is Red0 ¼ 2:1� 10�4. Full details of the computation may be found in reference [20]. For the current compu-
tation, the 1/e beam radius was set equal to r0 = d0 and the beam center was set to be 5d0 upstream from the ramp to avoid
effects of the separation at the shock location. The mean boundary layer at this location was roughly d = 1 mm in height. The
transverse grid spacing was set to Dx = Dy = d0/45. Fig. 22 shows the constant isosurface of density non-dimensionalized by
the freestream of q = 0.9, along with the beam passing through the turbulence. The computation was run with wavelengths
of 10.6 lm and 1.06 lm, representing a CO2 and Nd-YAG lasers, respectively. As seen from Figs. 23 and 24, the longer wave-
length shows a larger difference in the OPD when calculated by the two methods of Eqs. (33) and (35). This indicates that as
Fig. 22. Gaussian beam passing through a Mach 3 boundary layer. (Constant density isosurface of q = 0.9. Outer surface of beam is ro = d0.)

Fig. 23. Comparison of optical path difference. Left: OPDb from the parabolic beam equation, k = 1.06 lm. Middle: OPD integrated from Eq. (33). Right: OPDb

from the parabolic beam equation, k = 10.6 lm.

Fig. 24. Difference of OPD as calculated by the parabolic beam equation and Eq. (33). Left: k = 1.06 lm. Right: k = 10.6 lm.
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the wavelength gets longer, the transverse terms of the phase become more important in the optical path (see Appendix C for
details).

6. Conclusions

The parabolic beam method is shown to be an effective tool to investigate the interaction of laser beams with turbulent
flow. The methodology is robust and can accurately model diffraction throughout the majority of the Fresnel region. The re-
gion very near the aperture are seen to be more difficult to resolve due to assumptions made in deriving the governing equa-
tion. The current study shows that the addition of a Born series approximation appears to be able to overcome the limitations
from the paraxial approximation, but questions remain as to whether this might be the optimal solution due to resolution
requirements. Another option might be to add in the analytical approximation for the near axis. While this will only correct
the center of the beam, this is the region that gives the highest amplitude, and thus has the greatest potential impact for non-
linear effects.

The method has the ability to give quantitative information about the accuracy of traditional methods based on optical
path differences, as well as being extendable to include more physical modeling. The results show that there appears to be
little problem with aperturing after the turbulent zone and applying the OPD to the solution, if one takes care to make the
appropriate adjustment to the target location. Perhaps a better viewpoint is that the OPD should be translated back to the
aperture location before projecting to the far-field. The isotropic turbulence results affirm the view that the density does not
need to be interpolated to as high an order of accuracy as is being used to solve the optics. The supersonic boundary layer
results indicate that for long wavelength and high compressibility, neglecting of the transverse components in the traditional
OPD may not be as accurate as for the shorter wavelengths.

Considering all of the unknowns in most aero-optical problems, the results clearly show that the traditional methods are
more than suitable for the applications in which they are typically used. However, should one need to know the beam over
some finite volume of space, the current method may be more desirable, due to the higher cost of calculating over volumes in
the integral methods. The current method has shown that with the higher level of physical modeling, new insight can be
gained on how the traditional methods behave and the limits of these methods may be more fully investigated. The parabolic
equations can easily be used in conjunction with the traditional methods and gives the researcher another tool to use in sim-
ulating beam propagation.
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Appendix A. (2,4) Adaptive Runge–Kutta

The adaptive Runge–Kutta is formulated for an ode of the form:
dA=dz ¼ f ðz;AÞ ð36Þ
with
Kr ¼ Dzf zn þ crDz;An þ
Xr�1

j¼1

ar;jKj

 !
; ð37Þ

Anþ1 ¼ An þ
X4

r¼1

�brKr; ð38Þ

bAnþ1 ¼ An þ
X4

r¼1

b̂rKr: ð39Þ
The interpolation of the density for the index of refraction can be computationally intensive, especially in the cases where it
is being calculated using direct Fourier transforms. Because of this, Kutta’s standard 4th-order RK was chosen as the base
solver as it only requires the index of refraction to be calculated twice (at locations zn + Dz/2 and zn + Dz) per marching step.

Fig. 25 gives the coefficients in standard Butcher Tableau notation.
The variables b̂1 ¼ b̂4 ¼ 1

6 and b̂2 ¼ b̂3 ¼ 1
3 are the coefficients for the standard 4th-order Runge–Kutta (RK4). Most adaptive

Runge–Kuttas are formulated with an order pair (p � 1, p). Two of the most popular are the Fehlberg (4,5) pair [21] and the
Dormand-Prince (4,5) pair [22]. However, these two methods require two more stages and more evaluations of the index of
refraction. A (3,4) pair likewise requires at least five stages [21]. However, a (2,4) pair can be constructed for any 4th order RK
with relative ease. This is because the only criterion is that the four weights �b1, �b2;

�b3;
�b4 must satisfy the first two order con-

ditions, which in this case are:



Fig. 25. Butcher table for adaptive Runge–Kutta.

Fig. 26.
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�b1 þ �b2 þ �b3 þ �b4 ¼ 1; ð40Þ
�b2 þ �b3

2
þ �b4 ¼

1
2
: ð41Þ
In theory, the stability of the scheme should be the smaller of the two embedded RKs and an example is shown in Fig. 26.
However, as the Runge–Kutta is to be advanced with the higher-order, the lower-order RK should have smaller stability re-
gion for possible eigenvalues of the problem in order to preclude a situation where the problem is slightly outside the sta-
bility region of the RK4 and diverges slowly enough that it does not trigger the adaptive step control.

The standard RK4 has a truncation error of order Dz5, while the embedded RK has a truncation error:
Anþ1 ¼ Aðznþ1Þ þ Dz3L þOðDz4Þ; ð42Þ
where L ¼ Lff n; @zf n; @zzf n; @Af n; @AAf n; @Azf ng and fn � f (zn,An). Thus,
T e ¼ bAnþ1 � Anþ1
��� ��� � Dz3L

�� �� ð43Þ
represents a direct measure of the error per step at each point. However, depending on the shape of A, this might not capture
the maximum error. To consider the maximum relative error, the following formulation may be used:
T n ¼
bAnþ1 � Anþ1
��� ���
jAnj þ esm

� Dz3K
�� ��; ð44Þ
where K is defined by the relation L ¼ KAn and esm is a small value to prevent dividing by zero. While the relative error is
generally preferred, it is possible for the solution to be diverging while keeping T n bounded. Thus, the effective error esti-
mate should be the maximum of the two values:
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Stability plot for the explicit Runge–Kutta. The solid line is standard Kutta’s values, the dashed line is �b1 ¼ �b2 ¼ �b3 ¼ �b4 ¼ 1=4, and the dot-dash line
�b4 ¼ 0; �b2 ¼ 1=4; �b3 ¼ 3=4.
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E ¼maxðT e; T nÞ ¼ jDz3jmaxðjLj; jKjÞ: ð45Þ
This error estimate is desired to be kept below a local tolerance per unit step [15]:
E 6 jDzjetol: ð46Þ
If one assumes that K (and hence L) is approximately constant, then an ideal step (D�z) based on the error estimate may be
determined from:
D�z3
�� ��maxðjLj; jKjÞ ¼ D�zj jetol: ð47Þ
By requiring that Dz change by factors of two, the condition may be written as:
D�z ¼ Dz
2p ð48Þ
giving
E
Dzetol

���� ���� ¼ 23p�1 ð49Þ
or
p ¼
1þ log2

E
Dzetol

��� ���� 	
3

: ð50Þ
If p is allowed to remain real, then Dz tends to change with every marching step. In the present work, p is usually rounded to
the nearest integer.

The choice of which second order to use for the adaptive Runge–Kutta has little effect on the accuracy of the final solution
as seen in Fig. 27. While the errors are very close here (and in some cases, the more accurate one is switched), there is a clear
advantage of choosing bT ¼ f1=4;1=4;1=4;1=4g over bT ¼ f0;1=4;3=4;0g. The former has a larger stability range and typi-
cally will solve the problem for a given tolerance in fewer steps. As can be seen in Fig. 28, the adaptive RK (aRK) tends to
target the normalized rather than absolute error. As these errors are greatest very near to the boundary, it may indicate that
the parameter esm may not be sufficiently small enough. To assess the effect of the tolerances on the accuracy of the aRK, a
Gaussian beam was propagated in constant density with the standard RK4 and fixed marching step-size. The grid was dis-
cretized with 201 � 201 points in x and y which corresponds to Dx = Dy = 0.05. The beam was marched 4000 steps to z = 100,
giving a ratio of Dz to Dx of 0.5. The maximum error from the theoretical was L1 = 5.76 � 10�9 located at (x, y) = (±4.75, 0)
and (x,y) = (0, ±4.75). The L1 norm was 3 � 10�10. In the nearer domain bounded by ±p, the errors drop to: L1 = 9.3 � 10�10

and L1 = 2.6 � 10�12. A range of tolerances were tested against this RK4 solution and is shown in Table 3. Note that the code
has been routinely run setting Dz0 = 1000 and letting the aRK find its preferred step without any problems.

Appendix B. Details of verification methodology

To verify the implementation of the algorithm, the code was run with the index of refraction replaced with a complex
parameter g.

This leads to Eq. (6) being:
@2A
@r2 þ

1
r
@A
@r
þ 1

r2

@2A

@h2 þ 2ik
@A
@z
þ gðr; h; zÞA ¼ 0: ð51Þ
For the methodology, a non-trivial analytic function is desired that will exercise all terms in the error expansion [12]. For the
current case a trial solution was chosen to be:
Fig. 27. Tolerance of adaptive RK set to 1.e�4. Left: b = (1/4,1/4,1/4,1/4). Right: b = (0,1/4,3/4,0).



Fig. 28. Tolerance of adaptive RK set to 1.e�5 at z = 100. Left: jAaRK � ARK4,finej. Right: jAaRK � ARK4,finej/jARK4,finej.

Table 3
Adaptive Runge–Kutta. Reference was run with dz = 0.025, 4000 iterations to convergence.

etol Dz0 # Steps min/max Dz
Dx

jAaRK � ARK4,finej jAaRK�ARK4;fine j
jARK4;fine j

Pwr (p)

10�5 .05 141 4/32 1.4 � 10�12 3.8 � 10�5 Int
10�6 .05 373 2/8 1.1 � 10�13 2.0 � 10�7 Int
10�7 .05 1277 1/4 7.1 � 10�15 1.0 � 10�7 Int
10�6 10 428 3.125/12.5 1.2 � 10�13 4.4 � 10�7 Int
10�6 10 324 2.918/13.964 1.2 � 10�13 7.7 � 10�7 Real
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A ¼ A0

1þ iaz

� �
e�

akr2
2ð1þiazÞ�

b½z� sin2 ðcrÞ sinðhÞ
r : ð52Þ
This leads to g being defined as:
g ¼ 2ik sinðhÞ sin2ðcrÞb0½z�
r

þ 2cð2 cosðcrÞ cosð2hÞðcr cosðcrÞ � sinðcrÞÞ þ sinð2crÞÞð Þ sin2ðcrÞb½z�2

2r3

þ
1� 2c2r2

 �

cosð2crÞ � ð1þ 2c2r2Þ

 �

sin2ðcrÞb½z�2

2r4

þ
akr þ 2ð1þ iazÞc2 � ak


 �
cosð2crÞr � c 2akr2 þ ð1þ iazÞ

� 	
sinð2crÞ

� 	
sinðhÞb½z�

r2ð1þ iazÞ ; ð53Þ
where c and b[z] are free parameters and a is a complex function of wavenumber and focal length [1]. The imaginary part of
the index of refraction may be understood physically as modelling a linear absorption term. Note that g is bounded as:
lim
r!0

g ¼ �c4b½z�2; ð54Þ

lim
r!1

g
��� ��� 6 2ackb½z�

1þ iaz

���� ����: ð55Þ
For the current cases, the disturbance in (52) was run with the initial condition of (12), c = 15 and the ramping function, b[z]
as:
b½z� ¼ 0:1 0:5 tanhðd1zÞ þ 0:75 tanhðd2zÞ � tanhðzÞð Þ: ð56Þ
The constants in b[z] are d1 = 0.3622179832631045 and d2 = 1.091854677824597.

Appendix C. Rytov equation and OPD

The optical path difference (OPD) may be derived from the Helmholtz equation by considering changes in the phase of U.
Writing the beam in terms of a scalar phase, w(x,y,z), plus a propagating wave gives:
Uðx; y; zÞ ¼ a0eiwðx;y;zÞþik
s; ð57Þ
where s is distance in the direction of the propagation of the beam or ray. Again, making the paraxial approximation for w,
Eq. (1) reduces to the Rytov equation [1]:
�2k
@w
@s
þ ir2

?w� r?wð Þ2 þ k2 n
nr

� �2

� 1

 !
¼ 0: ð58Þ
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Letting wr be the reference phase solution for Eq. (58) with n = nr and expanding w = wr + d w, the change in phase due to
density variations (neglecting terms of order dw2) is:
�2k
@dw
@s
þ ir2

?dw� 2 r?wrð Þ 
 r?dwð Þ þ k2 n
nr

� �2

� 1

 !
� 0: ð59Þ
By setting n = nr + dn and neglecting the dn2 and all transverse derivatives compared to the k@s term, Eq. (59) reduces to:
dwgo ¼ k
Z L

0

n
nr
� 1

� �
ds ¼ 2p

kvac

Z L

0
n� nrð Þds; ð60Þ
where dwgo is recognized as the phase difference (using a geometrical optical approximation) and L is the length of the inte-
gration path. The optical path difference (OPD) based on the reference index of refraction nr is:
OPD ¼
Z L

0
n� nrð Þds: ð61Þ
If the deflection of the beam or ray is negligible, then the ds may be replaced with dz. Many researchers will take the refer-
ence index of refraction to be that of vacuum (nr = 1).
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